Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.552
Filtrar
1.
Planta ; 259(5): 120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607398

RESUMO

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Assuntos
MicroRNAs , Saccharum , Transcriptoma/genética , Saccharum/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , MicroRNAs/genética
2.
Sci Rep ; 14(1): 7679, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561368

RESUMO

Allelopathy is a process whereby a plant directly or indirectly promotes or inhibits growth of surrounding plants. Perennial sugarcane root extracts from various years significantly inhibited Bidens pilosa, Digitaria sanguinalis, sugarcane stem seedlings, and sugarcane tissue-cultured seedlings (P < 0.05), with maximum respective allelopathies of - 0.60, - 0.62, - 0.20, and - 0.29. Allelopathy increased with increasing concentrations for the same-year root extract, and inhibitory effects of the neutral, acidic, and alkaline components of perennial sugarcane root extract from different years were significantly stronger than those of the control for sugarcane stem seedlings (P < 0.05). The results suggest that allelopathic effects of perennial sugarcane root extract vary yearly, acids, esters and phenols could be a main reason for the allelopathic autotoxicity of sugarcane ratoons and depend on the type and content of allelochemicals present, and that allelopathy is influenced by other environmental factors within the rhizosphere such as the presence of old perennial sugarcane roots. This may be a crucial factor contributing to the decline of perennial sugarcane root health.


Assuntos
Saccharum , Plântula , Raízes de Plantas/química , Plantas Daninhas/fisiologia , Alelopatia , Extratos Vegetais/química
3.
Nat Commun ; 15(1): 3041, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589412

RESUMO

Sugarcane is a vital crop with significant economic and industrial value. However, the cultivated sugarcane's ultra-complex genome still needs to be resolved due to its high ploidy and extensive recombination between the two subgenomes. Here, we generate a chromosomal-scale, haplotype-resolved genome assembly for a hybrid sugarcane cultivar ZZ1. This assembly contains 10.4 Gb genomic sequences and 68,509 annotated genes with defined alleles in two sub-genomes distributed in 99 original and 15 recombined chromosomes. RNA-seq data analysis shows that sugar accumulation-associated gene families have been primarily expanded from the ZZSO subgenome. However, genes responding to pokkah boeng disease susceptibility have been derived dominantly from the ZZSS subgenome. The region harboring the possible smut resistance genes has expanded significantly. Among them, the expansion of WAK and FLS2 families is proposed to have occurred during the breeding of ZZ1. Our findings provide insights into the complex genome of hybrid sugarcane cultivars and pave the way for future genomics and molecular breeding studies in sugarcane.


Assuntos
Saccharum , Saccharum/genética , Melhoramento Vegetal , Genômica , Haplótipos/genética , Cromossomos
4.
Braz J Biol ; 84: e279536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597531

RESUMO

Planting with higher density in sugarcane is one of the practices used to overcome low productivity. However, this planting material is equivalent to 25% of the total cost of production, being one of the main expenses for cultivation. In this sense, the present work aims to evaluate the productivity and economic viability of sugarcane as a function of planting density. The experiment was carried out at Usina Monte Alegre in the municipality of Mamanguape, Paraíba, Brazil, from March 2021 to January 2022 with the variety RB92579. Seven planting density were studied: T1: 7 gems m-1, T2: 10 gems m-1, T3: 12 gems m-1, T4: 11 gems m-1, T5: 15 gems m-1, T6: 17 gems m-1, T7: 24 gems m-1, in randomized blocks with four replications. Growth, productivity and economic viability were evaluated. The highest productivity of cane and sugar, 77.69 ton ha-1 and 10.390 ton ha-1, respectively, was with planting density of 17 and 24 gems-1. While the minimum productivity of cane (61.313 ton ha-1) and sugar (7.924 ton ha-1) was recorded at sowing density of 7 and 11 gems-1. However, cultivation density with 7 and 10 gems m-1 were the ones that provided the highest profitability around 50%, followed by density of 12, 15 and 17 gems m-1 with an average of 45% profit and 11 and 24 gems m-1 with the lowest proportion of profit on average 38%. The cultivation with 17 gems m-1 of cane provides in cane-plant, variety RB92579, greater productivity with a profit rate of 45%, being the most suitable.


Assuntos
Saccharum , Açúcares , Brasil
5.
Sci Rep ; 14(1): 8420, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600155

RESUMO

In recent years biochar (BC) has gained importance for its huge carbon (C) sequestration potential and positive effects on various soil functions. However, there is a paucity of information on the long-term impact of BC on the priming effect and nutrient availability in soil with different properties. This study investigates the effects of BC prepared from rice husk (RBC4, RBC6), sugarcane bagasse (SBC4, SBC6) and mustard stalk (MBC4, MBC6) at 400 and 600 °C on soil C priming and nitrogen (N), phosphorus (P), and potassium (K) availability in an Alfisol, Inceptisol, and Mollisol. BC properties were analyzed, and its decomposition in three soil orders was studied for 290 days in an incubation experiment. Post-incubation, available N, P, and K in soil were estimated. CO2 evolution from BC and soil alone was also studied to determine the direction of priming effect on native soil C. Increasing pyrolysis temperature enhanced pH and EC of most of the BC. The pyrolysis temperature did not show clear trend with respect to priming effect and nutrient availability across feedstock and soil type. MBC6 increased C mineralization in all the soil orders while RBC6 in Alfisol and SBC6 in both Inceptisol and Mollisol demonstrated high negative priming, making them potential amendments for preserving native soil C. Most of the BC showed negative priming of native SOC in long run (290 days) but all these BC enhanced the available N, P, and K in soil. SBC4 enhanced N availability in Alfisol and Inceptisol, RBC4 improved N and P availability in Mollisol and P in Alfisol and MBC6 increased K availability in all the soils. Thus, based on management goals, tailored BC or blending different BC can efficiently improve C sequestration and boost soil fertility.


Assuntos
Carbono , Saccharum , Carbono/análise , Solo/química , Celulose , Carvão Vegetal/química , Nutrientes , Índia
6.
Physiol Plant ; 176(2): e14290, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38634341

RESUMO

In the present study, we analyzed GA3 (gibberellin)-treated sugarcane samples at the transcriptomic level to elucidate the differential expression of genes that influence sucrose accumulation. Previous research has suggested that GA3 application can potentially delay sink saturation by enhancing sink strength and demand, enabling the accommodation of more sucrose. To investigate the potential role of GA-induced modification of sink capacity in promoting higher sucrose accumulation, we sought to unravel the differential expression of transcripts and analyze their functional annotation. Several genes homologous to the sugar-phosphate/phosphate translocator, UTP-glucose-1-phosphate uridylyltransferase, and V-ATPases (vacuolar-type H+ ATPase) were identified as potentially associated with the increased sucrose content observed. A differentially expressed transcript was found to be identical to the mRNA of an unknown protein. Homology-based bioinformatics analysis suggested it to be a hydrolase enzyme, which could potentially act as a stimulator of sucrose buildup. The database of differentially expressed transcripts obtained in this study under the influence of GA3 represents a valuable addition to the sugarcane transcriptomics and functional genomics knowledge base.


Assuntos
Giberelinas , Saccharum , Giberelinas/metabolismo , Transcriptoma , Saccharum/genética , Saccharum/metabolismo , Sacarose/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fosfatos
7.
Pak J Biol Sci ; 27(2): 90-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38516750

RESUMO

<b>Background and Objective:</b> Vaname shrimp (<i>Litopenaeus vannamei</i>) is one of the main economic commodities in aquaculture in the world. Biofloc is a cultivation technology that effectively improves the growth and health status of vaname shrimp. This research aimed to analyze the use of bagasse as a carbon source in the biofloc system for white shrimp cultivation. <b>Materials and Methods:</b> The shrimp used were 18 g/individual shrimp obtained from the Bone Marine and Fisheries Polytechnic Pond. Sugarcane bagasse processed from sugar factory waste was dried in an oven at 60°C and ground using a flouring machine. The research treatments included biofloc application where sugarcane bagasse played a role as a carbon source (L), biofloc application where wheat flour's role was as a carbon source (T) and control or no biofloc application (K). <b>Results:</b> This research showed that sugarcane bagasse could be used as a carbon source for white shrimp biofloc cultivation where the growth value tended to be the same as wheat flour. Total hemolytic count (THC) and shrimp survival in sugarcane bagasse biofloc were as good as wheat flour biofloc. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. Sugarcane bagasse biofloc had the same ability as wheat flour biofloc in reducing ammonia levels in the rearing media. The application of bagasse had no effect on temperature, pH, dissolved oxygen and salinity of the rearing media because this treatment was in the optimal range for the growth of vaname shrimp. <b>Conclusion:</b> Sugarcane bagasse has the potential to be a carbon source in biofloc systems because it could improve growth, health status, survival and water quality.


Assuntos
Penaeidae , Saccharum , Animais , Celulose , Carbono , Amônia , Farinha , Triticum , Aquicultura
8.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474615

RESUMO

The valorization of byproducts from the sugarcane industry represents a potential alternative method with a low energy cost for the production of metabolites that are of commercial and industrial interest. The production of exopolysaccharides (EPSs) was carried out using the yeast Suhomyces kilbournensis isolated from agro-industrial sugarcane, and the products and byproducts of this agro-industrial sugarcane were used as carbon sources for their recovery. The effect of pH, temperature, and carbon and nitrogen sources and their concentration in EPS production by submerged fermentation (SmF) was studied in 170 mL glass containers of uniform geometry at 30 °C with an initial pH of 6.5. The resulting EPSs were characterized with Fourier-transform infrared spectroscopy (FT-IR). The results showed that the highest EPS production yields were 4.26 and 44.33 g/L after 6 h of fermentation using sucrose and molasses as carbon sources, respectively. Finally, an FT-IR analysis of the EPSs produced by S. kilbournensis corresponded to levan, corroborating its origin. It is important to mention that this is the first work that reports the production of levan using this yeast. This is relevant because, currently, most studies are focused on the use of recombinant and genetically modified microorganisms; in this scenario, Suhomyces kilbournensis is a native yeast isolated from the sugar production process, giving it a great advantage in the incorporation of carbon sources into their metabolic processes in order to produce levan sucrose, which uses fructose to polymerize levan.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Saccharum/metabolismo , Melaço/análise , Carbono , Espectroscopia de Infravermelho com Transformada de Fourier , Saccharomyces cerevisiae/metabolismo , Frutanos/química , Sacarose/metabolismo
9.
Sci Rep ; 14(1): 6716, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509345

RESUMO

Cement is the most widely used construction material due to its strength and affordability, but its production is energy intensive. Thus, the need to replace cement with widely available waste material such as incinerated black filter cake (IBFC) in order to reduce energy consumption and the associated CO2 emissions. However, because IBFC is a newly discovered cement replacement material, several parameters affecting the mechanical properties of IBFC-cement composite have not been thoroughly investigated yet. Thus, this work aims to investigate the impact of IBFC as a cement replacement and the addition of the calcifying bacterium Lysinibacillus sp. WH on the mechanical and self-healing properties of IBFC cement pastes. The properties of the IBFC-cement pastes were assessed by determining compressive strength, permeable void, water absorption, cement hydration product, and self-healing property. Increases in IBFC replacement reduced the durability of the cement pastes. The addition of the strain WH to IBFC cement pastes, resulting in biocement, increased the strength of the IBFC-cement composite. A 20% IBFC cement-replacement was determined to be the ideal ratio for producing biocement in this study, with a lower void percentage and water absorption value. Adding strain WH decreases pore sizes, densifies the matrix in ≤ 20% IBFC biocement, and enhances the formation of calcium silicate hydrate (C-S-H) and AFm ettringite phases. Biogenic CaCO3 and C-S-H significantly increase IBFC composite strength, especially at ≤ 20% IBFC replacement. Moreover, IBFC-cement composites with strain WH exhibit self-healing properties, with bacteria precipitating CaCO3 crystals to bridge cracks within two weeks. Overall, this work provides an approach to produce a "green/sustainable" cement using biologically enabled self-healing characteristics.


Assuntos
Saccharum , Silicatos , Compostos de Cálcio , Cimentos Ósseos , Bactérias , Água
10.
Int J Biol Macromol ; 265(Pt 2): 130969, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508562

RESUMO

Polyethyleneimine-modified magnetic sugarcane bagasse cellulose film (P-SBC/Fe3O4 film) was simply fabricated for the removal of ibuprofen (IBP), a typical emerging organic contaminant. The P-SBC/Fe3O4 film exhibited an equilibrium adsorption amount of 370.52 mg/g for IBP and a corresponding removal efficiency of 92.63 % under following adsorption conditions: 318 K, pH 4, and 0.25 mg/mL dosage. Thermodynamic studies indicated that adsorption of IBP on the P-SBC/Fe3O4 film was spontaneous (∆G < 0) and endothermic (∆H > 0). The adsorption data conformed to the Freundlich isotherm model and multilayer adsorption model (two layers), and an average of 3-4 active sites on the P-SBC/Fe3O4 film share an IBP molecule. Both the EDR-IDR and AOAS models vividly described the dynamic characteristics of adsorption process. Model fitting results, theoretical calculations, and comprehensive characterization revealed that adsorption is driven by electrostatic interactions between the primary amine of P-SBC/Fe3O4 film and the carboxyl group of IBP molecule, while other weak interactions are also non-ignorable. Furthermore, quantitative calculations based on density functional theory (DFT) underscored the importance of PEI functionalization. In conclusion, P-SBC/Fe3O4 film is an environmentally friendly and cost-effective adsorbent with significant potential for effectively removing IBP, while maintaining its efficacy over multiple cycles.


Assuntos
Polietilenoimina/análogos & derivados , Saccharum , Poluentes Químicos da Água , Adsorção , Celulose/química , Ibuprofeno , Saccharum/química , Polietilenoimina/química , Fenômenos Magnéticos , Cinética , Concentração de Íons de Hidrogênio
11.
Chemosphere ; 355: 141748, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521109

RESUMO

Sugarcane bagasse is one of the most common Vietnamese agricultural waste, which possesses a large percentage of cellulose, making it an abundant and environmentally friendly source for the fabrication of cellulose carbon aerogel. Herein, waste sugarcane bagasse was used to synthesize cellulose aerogel using different crosslinking agents such as urea, polyvinyl alcohol (PVA) and sodium alginate (SA). The 3D porous network of cellulose aerogels was constructed by intermolecular hydrogen bonding, which was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and nitrogen adsorption/desorption. Among the three cellulose aerogel samples, cellulose - SA aerogel (SB-CA-SA) has low density of 0.04 g m-3 and high porosity of 97.38%, leading to high surface area of 497.9 m2 g-1 with 55.67% micropores of activated carbon aerogel (SB-ACCA-SA). The salt adsorption capacity was high (17.87 mg g-1), which can be further enhanced to 31.40 mg g-1 with the addition of CNT. Moreover, the desalination process using the SB-ACCA-SA-CNT electrode was stable even after 50 cycles. The results show the great combination of cellulose from waste sugarcane bagasse with sodium alginate and carbon nanotubes in the fabrication of carbon materials as the CDI-utilized electrodes with high desalination capability and good durability.


Assuntos
Nanotubos de Carbono , Saccharum , Celulose/química , Saccharum/química , Alginatos
12.
Int J Biol Macromol ; 265(Pt 2): 130615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538375

RESUMO

A green hybridized structure of Fe0 painted chitosan/cellulose base (Fe0@CS/CF) has been developed using cellulose extracted from sugarcane bagasse along with reduction agents sourced from Khaya senegalensis leaves. The composite was assessed as an affordable, powerful, and multifunctional catalyst for enhancing the degradation of Levofloxacin (LVX) remnants within water supplies via photo-Fenton's interactions. Using a dosage of 0.5 g/L, the Fe0@CS/CF blend demonstrated noteworthy catalytic qualities, resulting in the complete photo-Fenton's degradation of LVX at a level of 25 mg/L after 40 min. However, the complete diminution of organic carbon (TOC) occurred only after 100 min, suggesting the presence of significant intermediate residues. The identified intermediate chemicals and confirmed hydroxyl radicals as the main oxidizer suggest that the degradation pathway involves carboxylation/decarboxylation, hydroxylation, demethylation, and oxidation of quinolone rings. The toxicity properties of untreated LVX solutions and their subsequent oxidized byproducts were assessed by evaluating their inhibiting impact on Vibrio fischeri over various durations. The samples that experienced partial oxidation at initial testing demonstrated a higher level of toxicity in comparison to the parent LVX. However, the sample that was treated for 100 min demonstrated substantial biological safety and a non-toxic nature. The blend of ingredients has a synergistic impact that enhances the uptake, Fenton's, photocatalytic, and photo-Fenton's characteristics of the hosted Fe0 nanoparticles.


Assuntos
Quitosana , Saccharum , Levofloxacino , Celulose , Peróxido de Hidrogênio/química , Oxirredução
13.
J Biotechnol ; 386: 28-41, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461861

RESUMO

Low production costs and a potential feedstock supply make lignocellulosic ethanol (bioethanol) an important source of advanced biofuels. The physical and chemical preparation of this kind of lignocellulosic feedstock led to a high ethanol yield. In order to increase the yield of fermentable sugars, pretreatment is an essential process step that alters the lignocellulosic structure and improves its accessibility for the expensive hydrolytic enzymes. In this context, the chemical composition of sugarcane trash (dry leaves, green leaves, and tops) and jatropha (shell and seed cake) was determined to be mainly cellulose, hemicellulose, and lignin. Hydrogen peroxide and sodium hydroxide were applied in an attempt to facilitate the solubilization of lignin and hemicelluloses in five agrowastes. The extraction of hydrogen peroxide was much better than that of sodium hydroxide. A comparative study was done using SEM, EDXA, and FTIR to evaluate the difference between the two methods. The pretreated wastes were subjected to saccharification by commercial cellulases (30 IU/g substrate). The obtained glucose was fortified with nutrients and fermented statically by Saccharomyces cerevisiae F-307 for bioethanol production. The results revealed the bioethanol yields were 325.4, 310.8, 282.9, 302.4 and 264.0 mg ethanol/g treated agrowastes from green leaves of sugarcane, jatropha deolied seed cake, tops sugarcane, dry leaves of sugarcane, and jatropha shell, respectively. This study emphasizes the value of lignocellulosic agricultural waste as a resource for the production of biofuels as well as the significance of the extraction process.


Assuntos
Jatropha , Saccharum , Lignina/metabolismo , Saccharum/química , Jatropha/metabolismo , Biocombustíveis , Hidróxido de Sódio , Peróxido de Hidrogênio , Etanol , Saccharomyces cerevisiae/metabolismo , Hidrólise , Fermentação
14.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542189

RESUMO

The encapsulation of retinol within silica microparticles has emerged as a promising opportunity in the realm of cosmetic and pharmaceutical formulations, driven by the need to reinforce the photoprotection and oxidation stability of retinol. This work examines the process of encapsulating retinol into silica microparticles. The association efficiency, microparticle size, molecular structure, morphology, oxidation, and release profile, as well as biocompatibility and skin sensitization, were evaluated. Results showed that 0.03% of retinol and 9% of emulsifier leads to an association efficiency higher than 99% and a particle size with an average of 5.2 µm. FTIR results indicate that there is an association of retinol with the silica microparticles, and some may be on the surface. Microscopy indicates that when association happens, there is less aggregation of the particles. Oxidation occurs in two different phases, the first related to the retinol on the surface and the second to the associated retinol. In addition, a burst release of up to 3 h (30% free retinol, 17% associated retinol) was observed, as well as a sustained release of 44% of retinol up to 24 h. Encapsulation allowed an increase in the minimal skin cytotoxic concentrations of retinol from 0.04 µg/mL to 1.25 mg/mL without skin sensitization. Overall, retinol is protected when associated with silica microparticles, being safe to use in cosmetics and dermatology.


Assuntos
Retinoides , Saccharum , Preparações de Ação Retardada , Vitamina A , Dióxido de Silício/química , Tamanho da Partícula
15.
PLoS One ; 19(3): e0301294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547096

RESUMO

Egypt is among the world's largest producers of sugarcane. This crop is of great economic importance in the country, as it serves as a primary source of sugar, a vital strategic material. The pre-cutting planting mode is the most used technique for cultivating sugarcane in Egypt. However, this method is plagued by several issues that adversely affect the quality of the crop. A proposed solution to these problems is the implementation of a sugarcane-seed-cutting device, which incorporates automatic identification technology for optimal efficiency. The aim is to enhance the cutting quality and efficiency of the pre-cutting planting mode of sugarcane. The developed machine consists of a feeding system, a node scanning and detection system, a node cutting system, a sugarcane seed counting and monitoring system, and a control system. The current research aims to study the pulse widths (PW) of three-color channels (R, G, and B) of the RGB color sensors under laboratory conditions. The output PW of red, green, and blue channel values were recorded at three color types for hand-colored nodes [black, red, and blue], three speeds of the feeding system [7.5 m/min, 5 m/min, and 4.3 m/min], three installing heights of the RGB color sensors [2.0 cm, 3.0 cm, and 4.0 cm], and three widths of the colored line [10.0 mm, 7.0 mm, and 3.0 mm]. The laboratory test results s to identify hand-colored sugarcane nodes showed that the recognition rate ranged from 95% to 100% and the average scanning time ranged from 1.0 s to 1.75 s. The capacity of the developed machine ranged up to 1200 seeds per hour. The highest performance of the developed machine was 100% when using hand-colored sugarcane stalks with a 10 mm blue color line and installing the RGB color sensor at 2.0 cm in height, as well as increasing the speed of the feeding system to 7.5 m/min. The use of IoT and RGB color sensors has made it possible to get analytical indicators like those achieved with other automatic systems for cutting sugar cane seeds without requiring the use of computers or expensive, fast industrial cameras for image processing.


Assuntos
Internet das Coisas , Saccharum , Processamento de Imagem Assistida por Computador , Tecnologia , Sementes
16.
Microb Cell Fact ; 23(1): 73, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431598

RESUMO

BACKGROUND: Lignocellulosic biomass provides a great starting point for the production of energy, chemicals, and fuels. The major component of lignocellulosic biomass is cellulose, the employment of highly effective enzymatic cocktails, which can be produced by a variety of microorganisms including species of the genus Aspergillus, is necessary for its utilization in a more productive manner. In this regard, molecular biology techniques should be utilized to promote the economics of enzyme production, whereas strategies like protoplast fusion could be employed to improve the efficacy of the hydrolytic process. RESULTS: The current study focuses on cellulase production in Aspergillus species using intrageneric protoplast fusion, statistical optimization of growth parameters, and determination of antioxidant activity of fermentation hydrolysate. Protoplast fusion was conducted between A. flavus X A. terreus (PFFT), A. nidulans X A. tamarii (PFNT) and A. oryzae X A. tubingensis (PFOT), and the resultant fusant PFNT revealed higher activity level compared with the other fusants. Thus, this study aimed to optimize lignocellulosic wastes-based medium for cellulase production by Aspergillus spp. fusant (PFNT) and studying the antioxidant effect of fermentation hydrolysate. The experimental strategy Plackett-Burman (PBD) was used to assess how culture conditions affected cellulase output, the best level of the three major variables namely, SCB, pH, and incubation temperature were then determined using Box-Behnken design (BBD). Consequently, by utilizing an optimized medium instead of a basal medium, cellulase activity increased from 3.11 U/ml to 7.689 U/ml CMCase. The following medium composition was thought to be ideal based on this optimization: sugarcane bagasse (SCB), 6.82 gm; wheat bran (WB), 4; Moisture, 80%; pH, 4; inoculum size, (3 × 106 spores/ml); and incubation Temp. 31.8 °C for 4 days and the fermentation hydrolysate has 28.13% scavenging activities. CONCLUSION: The results obtained in this study demonstrated the significant activity of the selected fusant and the higher sugar yield from cellulose hydrolysis over its parental strains, suggesting the possibility of enhancing cellulase activity by protoplast fusion using an experimental strategy and the fermentation hydrolysate showed antioxidant activity.


Assuntos
Celulase , Celulases , Saccharum , Celulose/metabolismo , Protoplastos/metabolismo , Antioxidantes , Saccharum/metabolismo , Aspergillus/metabolismo , Fermentação , Celulase/química , Hidrólise
17.
Bioresour Technol ; 399: 130518, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432544

RESUMO

This study identified the intrinsic relationships among slurry rheology, particle characteristics, and lignocellulosic liquefaction/saccharification based on correlation analysis and principal component analysis during the hydrolysis of sugarcane bagasse pretreated by deep eutectic solvents (DES) and mechanical milling (MM). The DES-MM pretreated lignocellulosic slurry (20% solids) exhibited high apparent viscosity of 1.4 × 104 Pa·s and shear stress of 929.0 Pa under steady state. Glucose production had a negative linear correlation with slurry viscosity (R2, 0.69-0.97), whereas its correlation with yield stress (R2, 0.85-0.98) depended on the particle liquefaction rate. The availability of free water provided a major contribution to improving slurry rheology. However, the size reduction of submillimeter particles and the changes in particle hydrophilicity during liquefaction were not significantly correlated with rheological changes. Various interrelated particle characteristics and rheological changes were integrated into two simple principal variables to predict glucose production with a high R2 of 0.96.


Assuntos
Celulase , Saccharum , Celulose , Hidrólise , Glucose , Reologia
18.
Theor Appl Genet ; 137(4): 81, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478168

RESUMO

KEY MESSAGE: Six QTLs of resistance to sugarcane orange rust were identified in modern interspecific hybrids by GWAS. For five of them, the resistance alleles originated from S. spontaneum. Altogether, they efficiently predict disease resistance. Sugarcane orange rust (SOR) is a threatening emerging disease in many sugarcane industries worldwide. Improving the genetic resistance of commercial cultivars remains the most promising solution to control this disease. In this study, an association panel of 568 modern interspecific sugarcane hybrids (Saccharum officinarum x S. spontaneum) from Réunion's breeding program was evaluated for its resistance to SOR under natural conditions of infection. Two genome-wide association studies (GWAS) were conducted between disease reactions and 183,842 single nucleotide polymorphism (SNP) markers obtained by targeted genotyping-by-sequencing. Five resistance quantitative trait loci (QTLs), named Oru1, Oru2, Oru3, Oru4 and Oru5, were identified using a single-locus GWAS (SL-GWAS). These five QTLs all originated from the species S. spontaneum. A multi-locus GWAS (ML-GWAS) uncovered an additional but less significant resistance QTL named Oru6, which originated from S. officinarum. All six QTLs had a moderate to major phenotypic effect on disease resistance. Prediction accuracy estimated with linear regression models based on each of the five QTLs identified by SL-GWAS was between 0.16-0.41. Altogether, these five QTLs provided a relatively high prediction accuracy of 0.60. In comparison, accuracies obtained with six genome-wide prediction models (i.e., GBLUP, Bayes-A, Bayes-B, Bayes-C, Bayesian Lasso and RKHS) reached only 0.65. The good prediction accuracy of disease resistance provided by the QTLs and the predominant S. spontaneum origin of their resistance alleles pave the way for effective marker-assisted breeding strategies.


Assuntos
Saccharum , Saccharum/genética , Estudo de Associação Genômica Ampla , Teorema de Bayes , Alelos , Resistência à Doença/genética , Melhoramento Vegetal
19.
Acta Cir Bras ; 39: e390724, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38477784

RESUMO

PURPOSE: The extracellular polysaccharide (EPS) is produced by the bacterium Zoogloea sp. and plays a positive role in tissue repair. The purpose of this study was to clinically and histologically compare the effects of EPS in the healing of traumatic oral ulcers in rats with the effects of triamcinolone. METHODS: Ulcers were induced in the oral mucous of 45 male Wistar rats, divided into three groups: control group, treated with triamcinolone, and treated with biopolymer gel. In the clinical evaluation, we considered the weight variation of the animals and the size of the lesion area, at baseline and on treatment days 1, 3 and 7. The histological parameters evaluated were the type and intensity of the inflammatory infiltration, the presence of necrosis and foreign body granuloma and the degree of re-epithelialization of the lesion. RESULTS: The reduction of the lesion area was greater in the animals treated with EPS, with no difference in the intensity of the inflammatory infiltration between the groups on days 3 and 7 of treatment. CONCLUSIONS: The results suggest that topical application of EPS in traumatic oral ulcers of rats promotes faster repair than triamcinolone ointment, without increasing the intensity of inflammatory infiltration under the lesion.


Assuntos
Úlceras Orais , Saccharum , Masculino , Animais , Ratos , Ratos Wistar , Biopolímeros , Triancinolona
20.
Braz J Biol ; 84: e279770, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511779

RESUMO

The pink sugarcane mealybug Saccharicoccus sacchari (Cockerell, 1895) (Hemiptera: Pseudococcidae) occurs practically in all sugarcane producing regions Saccharum spp. (Poaceae) causing damage. Little information is available about insect's biology under Brazilian conditions. In this work, biological development of pink sugarcane mealybug was studied at temperatures of 23 °C ± 2 °C and 28 °C ± 2 °C without photophase and relative humidity of 80%. Number and viability of eggs, incubation time, duration of the last oviposition, duration of each nymphal instar, viability of the nymphs, start of oviposition and longevity of the females were recorded. Biological development of insects was stipulated by the SAS University Edition software, version 9.4. There were differences in the life cycle of the pseudococcid at both temperatures evaluated. Females of S. sacchari had three nymphal instars and reproduce asexually. Asexual reproduction occurs in the field and under controlled conditions. By increasing the temperature increases, insect lived longer and the presence of the winged male in Brazil indicates the possibility of sexual reproduction of the species.


Assuntos
Hemípteros , Saccharum , Humanos , Animais , Feminino , Masculino , Temperatura , Insetos , Estágios do Ciclo de Vida , Ninfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...